Kamppailetko algebran kanssa? Etkö ole edes varma ilmauksen todellisesta merkityksestä? Tämä saattaa olla ensimmäinen kerta, kun olet törmännyt satunnaisiin aakkosten kirjaimiin matemaattisissa tehtävissäsi. Etkö tiedä mitä tehdä? Okei, tässä on opas sinulle.
Vaihe
Vaihe 1. Ymmärrä muuttujan merkitys
Satunnaisia kirjaimia, joita näet matemaattisissa tehtävissäsi, kutsutaan muuttujiksi. Jokainen muuttuja edustaa numeroa, jota et tiedä.
Esimerkki: Sisään 2x + 6, x on muuttuja.
Vaihe 2. Ymmärrä algebrallisten lausekkeiden merkitys
Algebrallinen lauseke on joukko numeroita ja muuttujia yhdistettynä mihin tahansa matemaattiseen operaatioon (lisäys, kertolasku, eksponentit jne.) Tässä muutamia esimerkkejä:
-
2x + 3v on ilmaisu. Tämä lauseke luodaan laskemalla yhteen tuotteen tulo
Vaihe 2. ja x kertolaskutuloksella
Vaihe 3. ja y.
-
2x itsessään on myös ilmaisu. Tämä ilmaisu on numero
Vaihe 2. ja yksi muuttuja x yhdistettynä kertolaskun matemaattiseen toimintaan.
Vaihe 3. Ymmärrä algebrallisten lausekkeiden laskemisen merkitys
Algebrallisen lausekkeen laskeminen tarkoittaa tietyn luvun syöttämistä muuttujalle tai tietyn muuttujan korvaamista annetulla numerolla.
Jos esimerkiksi sinua pyydetään laskemaan 2x + 6 ja x = 3, sinun tarvitsee vain kirjoittaa lauseke korvaamalla kaikki x 3: lla. 2(3) + 6.
-
Ratkaise lopputulos, jonka saat:
2(3) + 6
= 2×3 + 6
= 6 + 6
= 12
Joten 2x + 6 = 12, kun x = 3
Vaihe 4. Yritä laskea lauseke, jossa on useampi kuin yksi muuttuja
Tämä lasketaan täsmälleen samalla tavalla kuin laskettaessa algebrallinen lauseke, jossa on vain yksi muuttuja; Teet vain saman prosessin useammin kuin kerran.
Oletetaan, että sinua pyydetään laskemaan 4x + 3y x = 2, y = 6
- Korvaa x 2: 4 (2) + 3y
- Korvaa y arvolla 6: 4 (2) + 3 (6)
-
Viedä loppuun:
4×2 + 3×6
= 8 + 18
= 26
Joten 4x + 3y = 26 jossa x = 2 ja y = 6
Vaihe 5. Yritä laskea lauseke
Laske 7x2 - 12x + 13 jossa x = 4
- Lisää 4 osaan: 7 (4)2 - 12(4) + 13
-
Noudata toimintojärjestystäsi: K3BJK (hakasulkeet jaa vähemmän). Koska ratkaisuvoimat tulevat ennen kertolaskua, neliö 4 ennen kertomisen tai jakamisen suorittamista ja sen jälkeen lisäämistä tai vähentämistä.
Joten eksponentin ratkaiseminen antaa (4)2 = 16.
Tämä vaihe palauttaa lausekkeen 7 (16) - 12 (4) + 13
-
Kerro tai jaa:
7×16 - 12×4 + 13
= 112 - 48 + 13
-
Lisää tai vähennä:
112 - 48 + 13
= 77
Eli 7x2 - 12x + 13 = 77 jossa x = 4